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Abstract. In the present paper, we study configuration space groups. The
goal of this paper is to reconstruct group-theoretically the inertia groups asso-
ciated to various types of log divisors of a log configuration space of a smooth

log curve from the associated configuration space group equipped with its col-
lection of log-full subgroups.

0. Introduction

Let l be a prime number; k an algebraically closed field of characteristic ̸= l;

S
def
= Spec(k); (g, r) a pair of nonnegative integers such that 2g−2+r > 0; X log → S

a smooth log curve of type (g, r) (cf. Notation 1.3, (iv)); n ∈ Z>1. In the present
paper, we study the n-th log configuration space X log

n associated to X log → S (cf.
Definition 2.1). Write UX for the interior of the log scheme X log (cf. Notation 1.2,
(vi)). The log scheme X log

n may be thought of as a certain compactification of
the usual n-th configuration space UXn

associated to the smooth curve UX . Write

Πn
def
= πpro-l

1 (X log
n ) for the pro-l configuration space group determined by X log

n (cf.
[MzTa], Definition 2.3, (i)), i.e., the maximal pro-l quotient of the fundamental
group of the log scheme X log

n (for a suitable choice of basepoint). We shall refer to
an irreducible divisor of the underlying scheme of X log

n contained in the complement
of UXn as a log divisor of X log

n . Each log divisor V determines, up to Πn-conjugacy,
an inertia group IV (≃ Zl) ⊆ Πn, which plays a central role in the present paper. Let
V1, . . . , Vn be distinct log divisors of X log

n such that V1∩· · ·∩Vn ̸= ∅. Then we shall

refer to P
def
= V1∩· · ·∩Vn as a log-full point (cf. Definition 2.2, (ii), and Proposition

2.10). The log-full point P = V1∩· · ·∩Vn determines, up to Πn-conjugacy, a log-full
subgroup A (≃ IV1×· · ·×IVn ≃ Z⊕n

l ) ⊆ Πn (cf. Definition 2.2, (iii)). It is known that
the log-full subgroups of a configuration space group may be characterized group-
theoretically whenever the configuration space group is equipped with the action
of a profinite group that satisfies certain properties (cf. [HMM], Theorem D). In
the present paper, we reconstruct group-theoretically the inertia groups associated
to the log divisors from a configuration space group equipped with its collection of
log-full subgroups. Moreover, we reconstruct group-theoretically the inertia groups
associated to the tripodal divisors (cf. Definition 3.1, (ii)) and the drift diagonals
(cf. Definition 3.1, (iv)), as well as the drift collections of Πn (cf. Definition 8.13)
and the generalized fiber subgroups of Πn (cf. Definition 9.1).

Our main result is as follows:
1
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Theorem 0.1. For � ∈ {◦, •}, let l� be a prime number; k� an algebraically

closed field of characteristic ̸= l�; S� def
= Spec(k�); (g�, r�) a pair of nonnegative

integers such that 2g� − 2 + r� > 0;

X log� → S�

(cf. Notation 1.2, (vi)) a smooth log curve of type (g�, r�); n� ∈ Z>1; X
log�
n� the

n�-th log configuration space associated to X log� → S�; Π� def
= πpro-l�

1 (X log�
n� )

(for a suitable choice of basepoint);

ϕ : Π◦ ∼→ Π•

an isomorphism of profinite groups. We suppose that r� > 0 (cf. the discussion
below); ϕ induces a bijection between the set of log-full subgroups of Π◦ and the set
of log-full subgroups of Π•. Then the following hold:

(i) ϕ induces a bijection between the set of inertia groups of Π◦ associated to log

divisors of X log ◦
n◦ and the set of inertia groups of Π• associated to log divisors

of X log •
n• (cf. Theorem 5.2).

(ii) ϕ induces a bijection between the set of inertia groups of Π◦ associated to

tripodal divisors of X log ◦
n◦ and the set of inertia groups of Π• associated to

tripodal divisors of X log •
n• (cf. Theorem 6.6).

(iii) ϕ induces a bijection between the set of inertia groups of Π◦ associated to

drift diagonals of X log ◦
n◦ and the set of inertia groups of Π• associated to drift

diagonals of X log •
n• (cf. Theorem 7.3).

(iv) ϕ induces a bijection between the set of drift collections of Π◦ and the set of
drift collections of Π• (cf. Theorem 8.14).

(v) ϕ induces a bijection between the set of generalized fiber subgroups of Π◦ and
the set of generalized fiber subgroups of Π• (cf. Theorem 9.3).

Note that, roughly speaking, Theorem 0.1, (i), asserts that we may extract group-
theoretically a “geometric direct summand Zl” (i.e., an inertia group associated to
a log divisor) from “Z⊕n

l ” (i.e., a log-full subgroup).
Note that one may define the notion of a log-full point even if r = 0 (cf. [HMM],

Definition 1.1). On the other hand, since log-full points do not exist when r = 0,
we suppose that r > 0 in the present paper.

In the proof of Theorem 0.1, (ii), we use the fact that, in the notation of Theorem
0.1, in fact (g◦, r◦, n◦) = (g•, r•, n•) (cf. Theorem 3.10, (i)), which is proven in
[HMM], Theorem A, (i).

This paper is organized as follows: In §1, we explain some notations. In §2, we
define log configuration spaces, log-full points, and log divisors. In §3, we define
tripodal divisors and drift diagonals and then proceed to study the geometry of
various types of log divisors. In §4, we give a group-theoretic reconstruction of the
scheme-theoretically non-degenerate elements (cf. Definition 4.6, (i)) of a log-full
subgroup. In §5, we reconstruct the inertia groups associated to the log divisors.
In §6, we reconstruct the inertia groups associated to the tripodal divisors. In
§7, we reconstruct the inertia groups associated to the drift diagonals. In §8, we
reconstruct the drift collections of a configuration space group. In §9, we reconstruct
the generalized fiber subgroups of a configuration space group.
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1. Notations

Notation 1.1. (i) Let G be a group. Then we shall write “1G ∈ G” for the
identity element of G.

(ii) Let G be a group, H ⊆ G a subgroup, and α ∈ G. Then we shall write

ZG(H)
def
= {g ∈ G | gh = hg for any h ∈ H}

for the centralizer of H in G;

ZG(α)
def
= ZG(⟨α⟩) = {g ∈ G | gα = αg}

for the centralizer of α in G;

NG(H)
def
= {g ∈ G | gHg−1 = H}

for the normalizer of H in G.

Notation 1.2. Let Slog be an fs log scheme (cf. [Naka], Definition 1.7).

(i) Write S for the underlying scheme of Slog.
(ii) WriteMS for the sheaf of monoids that defines the log structure of Slog.
(iii) Let s be a geometric point of S. Then we shall denote by I(s,MS) the ideal

of OS,s generated by the image of MS,s \ O×
S,s via the homomorphism of

monoids MS,s → OS,s induced by the morphism MS → OS which defines
the log structure of Slog.

(iv) Let s ∈ S and s a geometric point of S which lies over s. Write (MS,s/O×
S,s)

gp

for the groupification of MS,s/O×
S,s. Then we shall refer to the rank of the

finitely generated free abelian group (MS,s/O×
S,s)

gp as the log rank at s. Note
that one verifies easily that this rank is independent of the choice of s, i.e.,
depends only on s.

(v) Let m ∈ Z. Then we shall write

Slog≤m def
= {s ∈ S | the log rank at s is ≤ m}.

Note that since Slog≤m is open in S (cf. [MzTa], Proposition 5.2, (i)), we shall
also regard (by abuse of notation) Slog≤m as an open subscheme of S.

(vi) We shall write US
def
= Slog≤0 and refer to US as the interior of Slog. When

US = S, we shall often use the notation S to denote the log scheme Slog.

Notation 1.3. Let (g, r) be a pair of nonnegative integers such that 2g−2+r > 0.

(i) Write Mg,r for the moduli stack (over Z) of pointed stable curves of type

(g, r) and Mg,r ⊆ Mg,r for the open substack corresponding to the smooth
curves. Here, we assume the marked points to be ordered.

(ii) Write

Cg,r →Mg,r

for the tautological curve overMg,r; Dg,r
def
= Mg,r \Mg,r for the divisor at

infinity.

(iii) Write Mlog

g,r for the log stack obtained by equipping the moduli stack Mg,r

with the log structure determined by the divisors with normal crossings Dg,r.
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(iv) The divisor of Cg,r given by the union of Cg,r ×Mg,r
Dg,r with the divisor of

Cg,r determined by the marked points determines a log structure on Cg,r; we
denote the resulting log stack by Clogg,r. Thus, we obtain a morphism of log
stacks

Clogg,r →M
log

g,r

which we refer to as the tautological log curve overMlog

g,r. If S
log is an arbitrary

log scheme, then we shall refer to a morphism

C log → Slog

whose pull-back to some finite étale covering T → S is isomorphic to the pull-

back of the tautological log curve via some morphism T log def
= Slog ×S T →

Mlog

g,r as a stable log curve (of type (g, r)). If C → S is smooth, i.e., every

geometric fiber of C → S is free of nodes, then we shall refer to C log → Slog

as a smooth log curve (of type (g, r)).
(v) A smooth log curve of type (0, 3) will be referred to as a tripod. A vertex of

a semi-graph of anabelioids of pro-l PSC-type (cf. [CmbGC], Definition 1.1,
(i)) of type (0, 3) (cf. [CbTpI], Definition 2.3, (iii)) will also be referred to as
a tripod.

Definition 1.4. Let G be a semi-graph of anabelioids of pro-l PSC-type (cf.
[CmbGC], Definition 1.1, (i)) and G the underlying semi-graph of G. Write

Cusp(G) (resp. Node(G), Vert(G), Edge(G))
for the set of cusps (resp. nodes, vertices, edges) of G and

Cusp(G) def
= Cusp(G), Node(G) def

= Node(G),

Vert(G) def
= Vert(G), Edge(G) def

= Edge(G).

2. Log configuration spaces and log divisors

Let l be a prime number; k an algebraically closed field of characteristic ̸= l;

S
def
= Spec(k); (g, r) a pair of nonnegative integers such that 2g − 2 + r > 0;

X log → S

(cf. Notation 1.2, (vi)) a smooth log curve of type (g, r); n ∈ Z>0. We suppose
that the marked points of X log are equipped with an ordering, and that

r > 0

(cf. the discussion at the end of the Introduction). In the present §2, we define log
configuration spaces, log-full points, and log divisors.

Definition 2.1. The smooth log curve X log over S determines, up to a choice of
ordering of the marked points (which will in fact not affect the following construc-

tion), a classifying morphism S → Mlog

g,r. Thus, by pulling back the morphism

Mlog

g,r+n → M
log

g,r given by forgetting the last n marked points via this morphism

S →Mlog

g,r, we obtain a morphism of log schemes

X log
n → S.
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We shall refer to X log
n as the n-th log configuration space associated to X log → S.

Note that X log
1 = X log. Write X log

0
def
= S.

Definition 2.2. (i) Write

Πn
def
= πpro-l

1 (X log
n )

for the maximal pro-l quotient of the fundamental group of the log scheme
X log

n (for a suitable choice of basepoint). We refer to [Hsh], Theorems B.1,
B.2, for more details on fundamental groups of log schemes.

(ii) Let P be a closed point of Xn. By abuse of notation, we shall use the
notation“P” both for the corresponding point of the scheme Xn and for the
reduced closed subscheme of Xn determined by this point. Then we shall say
that P is a log-full point of X log

n if

dim(OXn,P /I(P,MXn)) = 0

(cf. Notation 1.2, (iii)).
(iii) Let P be a log-full point of X log

n and P log the log scheme obtained by restrict-
ing the log structure ofX log

n to the reduced closed subscheme ofXn determined
by P . Then we obtain an outer homomorphism π1(P

log) → Πn (for suitable
choices of basepoints). We shall refer to the subgroup Im(π1(P

log) → Πn),
which is well-defined up to Πn-conjugation, as a log-full subgroup at P .

(iv) We shall often refer to a point of the scheme Xn as a point of X log
n . Let

P be a point of X log
n . Then P parametrizes a pointed stable curve of type

(g, r + n) (cf. Definition 2.1). Thus, any geometric point of X log
n lying over

P determines a semi-graph of anabelioids of pro-l PSC-type, which is in fact
easily verified to be independent of the choice of geometric point lying over
P . We shall write GP for this semi-graph of anabelioids of pro-l PSC-type.

(v) Let us fix an ordered set

Cr,n
def
= {c1, . . . , cr, x1

def
= cr+1, . . . xn

def
= cr+n}.

Thus, by definition, for each point P of X log
n , we have a natural bijection

Cr,n
∼→ Cusp(GP ). In the following, let us identify the set Cusp(GP ) with

Cr,n.
(vi) We shall refer to an irreducible divisor of Xn contained in the complement

Xn \ UXn
of the interior UXn

of X log
n as a log divisor of X log

n . That is to
say, a log divisor of X log

n is an irreducible divisor of Xn whose generic point
parametrizes a pointed stable curve with precisely two irreducible components
(cf. Definition 2.1).

(vii) Let V be a log divisor of X log
n . Then we shall write GV for “GP ” in the case

where we take “P” to be the generic point of V .
(viii) For each i ∈ {1, . . . , n}, write pi : X log

n → X log for the projection morphism of

co-profile {i} (cf. [MzTa], Definition 2.1, (ii)). Write ι
def
= (p1, . . . , pn) : X

log
n →

X log ×S · · · ×S X log.

Definition 2.3. Let m ≥ 2 and y1, . . . , ym ∈ Cr,n distinct elements such that
♯({y1, . . . , ym}∩{c1, . . . , cr}) ≤ 1. Then one verifies immediately — by considering
clutching morphisms (cf. [Knu], Definition 3.8) — that there exists a unique log
divisor V of X log

n , which we shall denote by V ({y1, . . . , ym}), that satisfies the
following condition: GV has precisely two vertices v1, v2 such that v1 is of type
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(0,m + 1), v2 is of type (g, n + r −m + 1), and y1, . . . , ym are cusps of GV |v1 (cf.
[CbTpI], Definition 2.1, (iii)).

Remark 2.4. Let V be a log divisor of X log
n . Then let us observe that there exists

a unique collection of distinct elements y1, . . . , ym ∈ Cr,n such that ♯({y1, . . . , ym}∩
{c1, . . . , cr}) ≤ 1 and V = V ({y1, . . . , ym}). (Note that uniqueness holds even in
the case where g = 0 (in which case r ≥ 3), as a consequence of the condition that
♯({y1, . . . , ym} ∩ {c1, . . . , cr}) ≤ 1.) This observation is essentially a special case of
Proposition 2.6, (iii), below.

Definition 2.5. Let G be a semi-graph of anabelioids of pro-l PSC-type and G the
underlying semi-graph of G. Suppose that G is a tree. Let e ∈ Edge(G), v ∈ Vert(G)
be such that e abuts to v. Write b for the branch of e that abuts to v. By replacing
e by open edges e1, e2 such that e1 abuts to v, and e2 abuts to the vertex ̸= v to
which e abuts (resp. e1 abuts to v, and e2 is an edge which abuts to no vertex) if
e ∈ Node(G) (resp. e ∈ Cusp(G)), we obtain two connected semi-graphs. Write G ̸∋b

for the semi-graph (among these two connected semi-graphs) that does not contain
b. Write G∋b for the semi-graph (among these two connected semi-graphs) that
contains b. Observe that

• for arbitrary e ∈ Edge(G), G determines a natural semi-graph of anabelioids
of pro-l PSC-type G∋b whose underlying semi-graph may be identified with
G∋b;
• if e ∈ Node(G), then G also determines a natural semi-graph of anabelioids
of pro-l PSC-type G̸∋b whose underlying semi-graph may be identified with
G ̸∋b.

Proposition 2.6. Let P be a point of X log
n . Write G for the underlying semi-graph

of GP (cf. Definition 2.2, (iv)). Then the following hold:

(i) G is a tree.
(ii) Cusp(GP ) = {c1, . . . , cr, x1, . . . , xn}.
(iii) There exists a unique vertex vg ∈ Vert(GP ) that satisfies the following prop-

erties:
(a) The genus of GP |vg (cf. [CbTpI], Definitions 2.1, (iii); 2.3, (ii)) is g.
(b) Let e ∈ Node(GP ) that abuts to vg and bg the branch of e that abuts to

vg. Then ♯(Cusp((G)∋bg ) ∩ {c1, . . . , cr}) ≥ r − 1.
(c) For each v ∈ Vert(GP ) \ {vg}, the genus of GP |v is 0.

Proof. Assertion (i) follows immediately from the definition of GP . Assertion (ii)
follows from Definition 2.2, (v). Finally, we verify assertion (iii). Existence is
immediate. If g ̸= 0, uniqueness is immediate. If g = 0, it follows that r ≥ 3. Now
assume that there exists a vertex v′g ∈ Vert(GP ) such that v′g ̸= vg, and v′g satisfies
conditions (a), (b). It follows immediately from the connectedness of G that there
exists a node e ∈ Node(GP ) such that e abuts to vg, and v′g ∈ Vert(G ̸∋bg ), where
we write bg for the branch of e that abuts to vg. By condition (b) in the case
of vg, bg, it holds that ♯(Cusp(G∋bg ) ∩ {c1, . . . , cr}) ≥ r − 1 ≥ 2. On the other
hand, it follows immediately from the connectedness of G that there exists a node
e′ ∈ Node(GP ) such that e′ abuts to v′g, and vg ∈ Vert(G ̸∋b′g

), where we write b′g for

the branch of e′ that abuts to v′g. Next observe that it follows immediately from
the fact that G is a tree that G∋bg is a sub-semi-graph of G ̸∋b′g , which implies that
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♯(Cusp(G∋b′g
) ∩ {c1, . . . , cr}) ≤ r − 2. Thus, by condition (b) in the case of v′g, b

′
g,

we obtain a contradiction. �

Definition 2.7. Let P be a point of X log
n . Write G for the underlying semi-graph

of GP , vg ∈ Vert(GP ) for the vertex of Proposition 2.6, (iii). For e ∈ Node(GP ),
write be for the branch of e such that vg ∈ Vert(G∋be). Then we shall write

IG
def
= {Cusp((G)̸∋be) ∩ Cr,n | e ∈ Node(GP )} ⊆ 2Cr,n ,

where we write 2(−) for the set of subsets of (−). Note that it follows immediately
from Proposition 2.6, (iii), that for each I ∈ IG, ♯I ≥ 2.

Proposition 2.8. Let P, P ′ be points of X log
n . Write G, G′ for the respective

underlying semi-graphs of GP , GP ′ ; vg, v
′
g for the respective vertices characterized

in Proposition 2.6, (iii). If IG = IG′ ⊆ 2Cr,n , then there exists a unique isomorphism

of semi-graphs G ∼→ G′ that maps vg 7→ v′g and is compatible with the labels of cusps
∈ Cr,n. Moreover, ♯Vert(G) = ♯IG + 1, ♯Node(G) = ♯Node(GP ) = ♯IG.

Proof. Let J ∈ IG. Write J⊆
def
= {I ∈ IG | I ⊆ J ⊆ Cr,n}. Then one verifies

immediately that one may construct a (well-defined) semi-graph GJ satisfying the
following properties:

(i) The elements of Vert(GJ) are equipped with labels ∈ J⊆ that determine a

bijection Vert(GJ)
∼→ J⊆.

(ii) Let us call a subset {J1, J2} ⊆ J⊆ of cardinality ≤ 2 an adjacent pair of J⊆ if
J1 ( J2, and there does not exist an element I ∈ IG such that J1 ( I ( J2. For
e ∈ Node(GJ), write Vert(e) ⊆ Vert(GJ )

∼→ J⊆ for the subset (of cardinality
≤ 2) of vertices to which e abuts. Then the assignment

Node(GJ) ∋ e 7→ Vert(e) ∈ 2Vert(GJ ) ∼→ 2J⊆

determines a bijection of Node(GJ) onto the set of adjacent pairs of J⊆.
(iii) The cusps of GJ are equipped with labels ∈ Cr,n in such a way that, for each

I ∈ J⊆, these labels determine a bijection from the set of cusps of the vertex
labeled by I onto the subset I \ (

∪
IG∋J∗(I J

∗) ⊆ Cr,n. Moreover, these labels

determine a bijection Cusp(GJ)
∼→ J (⊆ Cr,n).

Next, one verifies immediately that one may construct a (well-defined) semi-graph
GIG satisfying the following properties:

(I) There exists a unique vertex of GIG equipped with a label vg. The set of cusps
of this vertex vg are equipped with labels ∈ Cr,n which determine a bijection
from the set of cusps of this vertex vg to the subset Cr.n \ (

∪
I∈IG

I) ⊆ Cr,n.

(II) The semi-graph GIG is obtained from vg (together with its associated cusps)
by gluing vg to GJ , where J ∈ IG ranges over the elements of IG that are max-
imal with respect to the relation of inclusion, along a node eJ ∈ Node(GIG)
that abuts to vg and the vertex of GJ labeled J (cf. (i)).

(III) The cusps of GIG are equipped with labels ∈ Cr,n that are compatible with
the labels of (I) (in the case of the cusps associated to the vertex labeled vg)
and (i) (in the case of the cusps associated to vertices ∈ Vert(GJ), for J as

in (II)). These labels determine a bijection Cusp(GIG)
∼→ Cr,n.

Then it follows immediately from Definition 2.7 that there exists a unique isomor-
phism of semi-graphs G ∼→ GIG that is compatible with the label “vg”, as well as



8 KAZUMI HIGASHIYAMA

with the labels of cusps ∈ Cr,n. Since G is a tree, it follows that GIG
∼← G is also a

tree. On the other hand, observe that it follows immediately from the construction
of GIG (cf. (i), (I), (II)), together with the definition of IG (cf. Definition 2.7), that
♯Vert(GIG) = ♯IG+1. Since GIG is a tree, we thus conclude that ♯Node(GIG) = ♯IG.
Finally, since GIG is completely determined by the subset IG ⊆ 2Cr,n , the remainder
of Proposition 2.8 follows immediately. �
Proposition 2.9. Let P be a point of X log

n and I ⊆ Cr,n such that ♯(I∩{c1, . . . , cr})
≤ 1. Write G for the underlying semi-graph of GP . Then the following conditions
are equivalent:

(i) P ∈ V (I) (cf. Definition 2.3).
(ii) I ∈ IG.
(iii) GV (I) is obtained from GP by generization (with respect to some subset of

Node(GP ) (cf. [CbTpI], Definition 2.8)).

Proof. The equivalence (i)⇐⇒ (iii) follows immediately — by considering clutching
morphisms (cf. [Knu], Definition 3.8) — from the latter portion of Definition 2.2,
(vi). The equivalence (ii) ⇐⇒ (iii) follows immediately from Definition 2.7. �
Proposition 2.10. Let m ∈ {1, . . . , n}; V1, . . . , Vm a collection of distinct log
divisors of X log

n such that V1 ∩ · · · ∩ Vm ̸= ∅. Then there exist nonnegative integers
i0, . . . , im such that

i0 + · · ·+ im = n−m,

and the intersection V1 ∩ · · · ∩ Vm is isomorphic, over S, to

Xi0 ×S (M0,i1+3 ×Z · · · ×ZM0,im+3 ×Z S).

In particular, the intersection V1 ∩ · · · ∩ Vm is irreducible of dimension n −m; if
m = n, then V1∩· · ·∩Vn is (the reduced closed subscheme determined by) a log-full
point.

Proof. Let P be a generic point of V1∩· · ·∩Vm. Write GP for the underlying semi-
graph of GP . Recall from Proposition 2.8 that ♯Vert(GP )− 1 = ♯Node(GP ) = ♯IGP

.
Thus, we conclude from Remark 2.4, together with the equivalence (i) ⇐⇒ (ii) of
Proposition 2.9, that

♯Node(GP ) = ♯IGP
= ♯{V | V is a log divisor of X log

n such that P ∈ V } ≥ m.

Since the divisor that determines the log structure of X log
n is a divisor with normal

crossings, we thus conclude that ♯Vert(GP )− 1 = ♯Node(GP ) = m, and hence that

{V | V is a log divisor of X log
n such that P ∈ V } = {V1, . . . , Vm}.

Thus, it follows from Proposition 2.6, (ii), that

♯{branches of edges (i.e., cusps and nodes) of GP } = n+ r + 2m.

Next, observe that it follows from Proposition 2.6, (iii), that there exists a clutch-
ing morphism

ρP : Xi0 ×S (M0,i1+3 ×Z · · · ×ZM0,im+3 ×Z S)→ Xn

(cf. [Knu], Definition 3.8) such that P lies in the image of this morphism ρP . Since
the morphism ρP is a proper monomorphism (cf. Propositions 2.6, (iii); 2.8), it
follows that the morphism ρP is a closed immersion. Thus, if we write XP for
the scheme-theoretic closure of P in Xn and XρP

for the image of ρP in Xn, then
XP ⊆ XρP .
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Next, observe that since the sum of the cardinalities of the sets of cusps of the
pointed stable curves parametrized by the moduli stack factors of the domain of
ρP is equal to

(i0 + r) +
m∑
j=1

(ij + 3),

it holds that

(i0 + r) +
m∑
j=1

(ij + 3) = ♯{branches of edges of GP } = n+ r + 2m,

and hence that

i0 +
m∑
j=1

ij = n−m.

Since

dim(XρP ) = dim(Xi0 ×S (M0,i1+3 ×Z · · · ×ZM0,im+3 ×Z S)) = i0 +

m∑
j=1

ij ,

and V1∪· · ·∪Vm is a divisor with normal crossings (which implies that dim(XP ) =
dim(V1 ∩ · · · ∩ Vm) = n−m), we thus conclude that

dim(XρP
) = dim(XP ),

and hence that XρP
= XP . Moreover, since

{V | V is a log divisor of X log
n such that P ∈ V } = {V1, . . . , Vm},

we thus conclude from Remark 2.4, together with the equivalence (i) ⇐⇒ (ii) of
Proposition 2.9, that {V1, . . . , Vm} determines IGP

, hence, by Proposition 2.8, that
{V1, . . . , Vm} determines GP . But this implies that every generic point of V1∩· · ·∩Vm

lies in XρP
, for some fixed P , and hence that V1 ∩ · · · ∩ Vm is irreducible. This

completes the proof of Proposition 2.10. �

3. Various types of log divisors

We continue with the notation introduced at the beginning of §2. In addition, we
suppose that n ∈ Z>1. In the present §3, we define various types of log divisors
and study their geometry.

Definition 3.1. (i) For positive integers i ∈ {1, . . . , n − 1}, j ∈ {i + 1, . . . , n},
write

πi,j : X ×S · · · ×S X → X ×S X

for the projection of the fiber product of n copies of X → S to the i-th and j-
th factors. Write δ′i,j for the inverse image via πi,j of the image of the diagonal
embedding X ↪→ X ×S X. Write δi,j for the uniquely determined log divisor
of X log

n whose generic point maps to the generic point of δ′i,j via the natural
morphism Xn → X ×S · · · ×S X (cf. Definition 2.2, (viii)). We shall refer to
the log divisor δi,j as a naive diagonal of X log

n .
(ii) Let V be a log divisor of X log

n . We shall say that V is a tripodal divisor if one
of the vertices of GV (cf. Definition 2.2, (vii)) is a tripod (cf. Notation 1.3,
(v)).
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(iii) Let V be a log divisor of X log
n . We shall say that V is a (g, r)-divisor if one

of the vertices of GV is of type (g, r) (cf. [CbTpI], Definition 2.3, (iii)).
(iv) Let V be a log divisor of X log

n . We shall say that V is a drift diagonal if there
exist a naive diagonal δ and an automorphism α of X log

n over S such that
V = α(δ).

Remark 3.2. Recall (cf. [NaTa], Theorem D) that:

• when (g, r) = (0, 3) or (1, 1), any automorphism of X log
n over S necessarily

arises as the composite of an automorphism (of X log
n that arises from an

automorphism) of X log over S with an automorphism of X log
n that arises

from a permutation of the r + n marked points of the stable log curve

X log
n+1 → X log

n ;

• when (g, r) ̸= (0, 3), (1, 1), any automorphism of X log
n over S necessarily

arises as the composite of an automorphism (of X log
n that arises from an

automorphism) of X log over S with an automorphism of X log
n that arises

from a permutation of the n factors of X log
n .

Proposition 3.3. The following hold:

(i) It holds that

{naive diagonals} = {V ({xi, xj}) | i ∈ {1, . . . , n− 1}, j ∈ {i+ 1, . . . , n}}

(cf. Definition 2.3).
(ii) If (g, r) ̸= (0, 3), then

{tripodal divisors}

= {V ({y1, y2}) | y1, y2 ∈ Cr,n are distinct elements, {y1, y2} ̸⊆ {c1, . . . , cr}}
(cf. Definition 2.3).

(iii) If (g, r) = (0, 3), then

{tripodal divisors} = {V ({y1, y2}) | Cr,n ⊇ {y1, y2} ̸⊆ {c1, c2, c3}}

∪ {V ({y1, y2})
def
= V (Cr,n \ {y1, y2}) | {y1, y2} ⊆ {c1, c2, c3}}

(cf. Definition 2.3).
(iv) Let V be a tripodal divisor and α an automorphism of X log

n over S. Then
α(V ) is a tripodal divisor.

Proof. First, assertion (i) follows immediately from the various definitions involved.
Next, assertions (ii), (iii) follow immediately from Remark 2.4, together with the
definition of tripodal divisors. Finally, we consider assertion (iv). It follows from Re-

mark 3.2 that α lifts to an automorphism of X log
n+1 relative to the natural morphism

X log
n+1 → X log

n , hence induces an isomorphism of GV with Gα(V ). This completes
the proof of assertion (iv). �

Proposition 3.4. The following hold:

(i) It holds that

{naive diagonals} ⊆ {drift diagonals} ⊆ {tripodal divisors} ⊆ {log divisors}.

(ii) If (g, r) ̸= (0, 3), (1, 1), then

{naive diagonals} = {drift diagonals}.
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(iii) If (g, r) = (0, 3) or (1, 1), then

{drift diagonals} = {tripodal divisors}.

Proof. First, we verify assertion (i). The first and third inclusions follow imme-
diately from the various definitions involved. The second inclusion follows from
Proposition 3.3, (i), (iv). This completes the proof of assertion (i). Assertion (ii)
follows immediately from Remark 3.2.

Finally, we consider assertion (iii). Let V be a tripodal divisor. Let us first
suppose that (g, r) = (0, 3). Then X log

n is naturally isomorphic to the mod-

uli stack (Mlog

0,n+3)k
def
= Mlog

0,n+3 ×Z S over S, on which the symmetric group on
n + 3 letters acts naturally. Moreover, it follows from Proposition 3.3, (iii), that
V = V ({y1, y2}), where y1, y2 ∈ Cr,n are distinct elements. Thus, there exists a
permutation α ∈ Sn+3 such that α(V ({x1, x2})) = V ({y1, y2}). Assertion (iii) in
the case where (g, r) = (0, 3) now follows immediately.

Next, let us suppose that (g, r) = (1, 1). Then X log
n is naturally isomorphic to

the fiber productMlog

1,n+1×Mlog
1,1

S over S, where the arrow S →Mlog

1,1 is taken to be

the classifying morphism S →Mlog

1,1 determined by X log (cf. Definition 2.1). Thus,
one verifies easily, by considering the automorphisms of an elliptic curve given by
translation by a rational point, that the action of the symmetric group on n + 1

letters on Mlog

1,n+1 induces an action of the symmetric group on n + 1 letters on

X log
n . Moreover, it follows from Proposition 3.3, (ii), that V = V ({y1, y2}), where

y1, y2 ∈ Cr,n are arbitrary distinct elements (cf. Definition 2.3). Thus, there exists
a permutation α ∈ Sn+1 such that α(V ({x1, x2})) = V ({y1, y2}). Assertion (iii) in
the case where (g, r) = (1, 1) now follows immediately. �

Definition 3.5. Let G be a semi-graph of anabelioids of pro-l PSC-type.

(i) We shall say that a vertex of G is a terminal vertex if precisely one node abuts
to it.

(ii) We shall say that a node of G is a terminal node if it abuts to a terminal
vertex.

(iii) Write

TerNode(G) ⊆ Node(G)
for the set of terminal nodes of G.

Proposition 3.6. Let P be a closed point of X log
n . Then it holds that

P is a log-full point⇐⇒ Node(Gp) = n.

Proof. This equivalence follows immediately from Definitions 2.1, 2.2, (ii), together
with the well-known modular interpretation of the log moduli stacks that appear
in the definition of X log

n (where we recall that the log structure of this log stack
arises from a divisor with normal crossings). �

Proposition 3.7. Let P be a log-full point of X log
n and A a log-full subgroup at P

(cf. Definition 2.2, (iii)). Then the following hold:

(i) It holds that ♯Node(GP ) = n. The underlying semi-graph of GP is a tree
that has precisely n + 1 vertices, one of which is of type (g, r) (cf. [CbTpI],
Definition 2.3, (iii)); the other vertices are tripods (cf. Notation 1.3, (v)).
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(ii) Write Node(GP ) = {e1, . . . , en} (cf. (i)). Then for each i ∈ {1, . . . , n}, there
exists a unique log divisor Vi such that there exists an isomorphism of GVi with
(GP ) Node(GP )\{ei} (cf. [CbTpI], Definition 2.8) which preserves the respective
orderings of cusps. In this situation, we shall say that Vi is the log divisor
associated to ei ∈ Node(GP ).

(iii) In the situation of (ii),

P = V1 ∩ · · · ∩ Vn and A = IV1 × · · · × IVn ,

where IVi ⊆ Πn is a suitable inertia group associated to Vi contained in A.
Moreover, for each i ∈ {1, . . . , n}, it holds that IVi ≃ Zl and A ≃ Z⊕n

l .
(iv) Let m be a positive number; W1, . . . ,Wm distinct log divisors such that P =

W1 ∩ · · · ∩Wm. Then m = n, and {W1, . . . ,Wm} = {V1, . . . , Vn} (cf. (iii)).

Proof. Assertion (i) follows immediately from Propositions 2.6, 2.8, and 3.6, to-
gether with the observation that a log-full point (cf. Definition 2.2, (ii)) corre-
sponds to an intersection of the sort considered in Proposition 2.10, in the case
where n = m, and ij = 0, for j = 0, 1, . . . ,m. Assertion (ii) follows immediately
from Proposition 2.9. Assertion (iii) follows from Propositions 2.9 and 2.10, and
[CbTpI], Lemma 5.4, (ii). Assertion (iv) follows immediately from Propositions 2.8,
2.9, 2.10, together with assertion (iii). �

Definition 3.8. Let P be a log-full point of X log
n and V1, . . . , Vn the log divisors

such that P = V1 ∩ · · · ∩ Vn (cf. Proposition 3.7, (iv)). We shall say that Vi is a
terminal divisor of P if there exists a terminal node e ∈ TerNode(GP ) such that Vi

is the log divisor associated to e ∈ Node(GP ) (cf. Proposition 3.7, (ii)).

Lemma 3.9. Let P be a log-full point of X log
n and V1, . . . , Vn the log divisors such

that P = V1∩ · · ·∩Vn (cf. Proposition 3.7, (iv)). Then the following conditions are
equivalent:

(i) Vi is a terminal divisor of P .
(ii) Vi is a tripodal divisor or a (g, r)-divisor.

Proof. The implication (i) =⇒ (ii) follows from Proposition 3.7, (i), (ii). The
implication (ii) =⇒ (i) follows immediately from the various definitions involved.

�

Theorem 3.10. For � ∈ {◦, •}, let l� be a prime number; k� an algebraically

closed field of characteristic ̸= l�; S� def
= Spec(k�); (g�, r�) a pair of nonnegative

integers such that 2g� − 2 + r� > 0;

X log� → S�

a smooth log curve of type (g�, r�); n� ∈ Z>1; X
log�
n� the n�-th log configuration

space associated to X log� → S�; Π� def
= πpro-l�

1 (X log�
n� ) (for a suitable choice of

basepoint);

ϕ : Π◦ ∼→ Π•

an isomorphism of profinite groups. Then the following hold:

(i) (g◦, r◦, n◦) = (g•, r•, n•).
(ii) If (g�, r�) ̸= (0, 3), (1, 1), then ϕ induces a bijection between the set of fiber

subgroups of a given co-length (cf. [MzTa], Definition 2.3, (iii)) of Π◦ and the
set of fiber subgroups of the same co-length of Π•.
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(iii) Suppose that (g�, r�) ̸= (0, 3), (1, 1). Write ι�Π : Π� → Π�1 × · · · ×Π�1 for the

outer homomorphism induced by ι� : X log�
n� → X log�×S� · · · ×S� X log� (cf.

Definition 2.2, (viii)), where Π�1
def
= πpro-l

1 (X log�) (for a suitable choice of
basepoint). Then ϕ induces a commutative diagram

Π◦ ϕ //

ι◦Π
��

Π•

ι•Π
��

Π◦
1 × · · · ×Π◦

1
∼ // Π•

1 × · · · ×Π•
1,

where the lower horizontal isomorphism preserves the respective direct product
decompositions (but possibly permutes the factors).

Proof. Assertion (i) follows from [HMM], Theorem A, (i). Assertion (ii) follows
from [MzTa], Corollary 6.3. Assertion (iii) follows from assertion (ii). �

4. Reconstruction of non-degenerate elements of log-full subgroups

We continue with the notation of §3. In the present §4, we reconstruct the subset
of scheme-theoretically non-degenerate elements (cf. Definition 4.6, (i), below) of a
log-full subgroup (cf. Theorem 4.15 below).

Proposition 4.1. Let m < n be an integer, q : X log
n → X log

m a projection, V a
log divisor of X log

n . Write q : Πn → Πm for the outer homomorphism induced by
q : X log

n → X log
m . Suppose that q(V ) ( Xm. Then the following hold:

(i) q(V ) is a log divisor of X log
m .

(ii) Let IV ⊆ Πn be an inertia group associated to V . Then q(IV ) (≃ IV ) is an
inertia group associated to q(V ).

Proof. Assertion (i) follows immediately from the latter portion of Definition 2.2,
(vi), together with the well-known modular interpretation of the log moduli stacks
that appear in the definition ofX log

n andX log
m . Assertion (ii) follows from [NodNon],

Remark 2.4.2, together with the surjectivity portion of [NodNon], Lemma 2.7, (ii).
�

Proposition 4.2. Let P be a log-full point of X log
n ; V1, . . . , Vn the log divisors such

that P = V1∩· · ·∩Vn; A = IV1×· · ·×IVn the log-full subgroup at P (cf. Proposition
3.7, (iii), (iv)). Then the following hold:

(i) There exists a tripodal divisor in {V1, . . . , Vn}. Suppose that V1 is a tripodal
divisor. Thus, GV1 has precisely two vertices v1, v

′
1, one of which is a tripod.

Suppose that v1 is a tripod.
(ii) If r = 1, then there exists a unique (g, r)-divisor in {V1, . . . , Vn}. Suppose

that Vn is this unique (g, r)-divisor.
(iii) In the situation of (i), if (g, r) ̸= (0, 3), then there exists an i0 ∈ {1+r, . . . , n+

r} such that ci0 is a cusp of GV1 |v1 (cf. [CbTpI], Definition 2.1, (iii)). In this

case, write p : X log
n → X log

n−1 for the projection morphism of profile {i0 − r}
(cf. [MzTa], Definition 2.1, (ii)).

(iv) In the situation of (i), if (g, r) = (0, 3), then there exists an i0 ∈ {1, . . . , 3+n}
such that ci0 is a cusp of GV1 |v1 . In this case, write p : X log

n → X log
n−1 for the
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morphism determined by the morphism (Mlog

0,n+3)k → (Mlog

0,n+2)k obtained by

forgetting the i0-th marked point (cf. the proof of Proposition 3.4, (iii))．

(v) In the situation of (iii) or (iv), it holds that V ′
1

def
= p(V1) = Xn−1 and V ′

i
def
=

p(Vi) is a log divisor of X log
n−1, for all i ∈ {2, . . . , n}.

(vi) In the situation of (v), it holds that V ′
i ̸= V ′

j , for all i ∈ {1, . . . , n − 1}, j ∈
{i+ 1, . . . , n}.

(vii) In the situation of (v), it holds that p(P ) is a log-full point of X log
n−1.

(viii) In the situation of (iii) or (iv), for arbitrary (g, r), we write, by abuse of
notation, p : Πn → Πn−1 for the (outer) homomorphism induced by p. Then

A′ def
= p(A) is a log-full subgroup of Πn−1, and we have exact sequences

1 // Πn/n−1
def
= Ker(p) // Πn

p // Πn−1
// 1,

1 // IV1
// A

p // A′ // 1.

Proof. Assertions (i), (ii) follow from Proposition 3.7, (i), (ii) (cf. also Lemma 3.9).
Assertion (iii) follows from Proposition 3.3, (ii). Assertion (iv) is immediate. Asser-

tion (v) follows from our choice of p : X log
n → X log

n−1, together with the terminality
of v1 (cf. also Proposition 4.1, (i)). Next, we verify assertion (vi). By assertion (v),
it holds that V ′

1 ̸= V ′
j , for all j ∈ {2, . . . , n}. Thus, we may assume without loss of

generality that 1 < i < j, and that GVi has precisely two vertices vi, wi such that
ci0 is a cusp of GVi |vi . Let us recall that we have identified Cusp(GVi), Cusp(GVj )
with Cr,n (cf. Definition 2.2, (v)). Suppose that V ′

i = V ′
j . Observe that ci0 does

not belong to the set of cusps of any tripod (vertex) of GVi ,GVj . Thus, one verifies
easily that GVj has precisely two vertices vj , wj such that

(Cusp(GVj |vj ) ∩ Cusp(GVj )) ∪ {ci0} = Cusp(GVi |vi) ∩ Cusp(GVi);

♯Cusp(GVj |vj
) + 1 = ♯Cusp(GVi |vi);

(Cusp(GVi |wi
) ∩ Cusp(GVi)) ∪ {ci0} = Cusp(GVj |wj

) ∩ Cusp(GVj );

♯Cusp(GVi |wi
) + 1 = ♯Cusp(GVj |wj

);

g(vi) = g(vj), g(wi) = g(wj),

where we write g(v(−)), g(w(−)) for the “genus” of GV(−)
|
v(−)

,GV(−)
|
w(−)

(cf. [CbTpI],

Definition 2.3, (ii)). But one verifies easily from the correspondence between log
divisors and subsets of Cr,n (cf. Remark 2.4), together with the definition of ci0 in
the statements of assertions (iii), (iv), that this implies that there exists a tripod
(vertex) vP of GP such that

Cusp(GP |vP ) ∩ Cusp(GP ) = {ci0}.

On the other hand, this contradicts the terminality of the tripodal divisor V1 (cf.
Lemma 3.9). In particular, we conclude that V ′

i ̸= V ′
j . Assertion (vii) follows from

assertion (vi). Finally, assertion (viii) follows from assertions (v), (vii), together
with [MzTa], Proposition 2.2, (i). �
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Proposition 4.3. Let P be a log-full point of X log
n and IV an inertia group asso-

ciated to a log divisor V . Then it holds that

P ∈ V ⇐⇒ there exists a log-full subgroup A at P such that IV ⊆ A.

Proof. The implication =⇒ follows immediately from Proposition 3.7, (iii), (iv).
Thus, it suffices to consider the implication⇐=. Let V1, . . . , Vn be log divisors such
that P = V1∩· · ·∩Vn (cf. Proposition 3.7, (iii), (iv)). We may assume without loss
of generality that V1 is a tripodal divisor (cf. Proposition 4.2, (i)). In the following,

we consider a projection p : X log
n → X log

n−1 as in Proposition 4.2, (iii) or (iv), and
the corresponding (outer) homomorphism p : Πn → Πn−1 of Proposition 4.2, (viii).

Let us first suppose that p(V ) = Xn−1. Then since the generic point of V
maps via p to the generic point of Xn−1, IV ⊆ Ker(p) ∩ A = IV1 (cf. Proposition
4.2, (viii)). Now observe that since p(V ) = p(V1) = Xn−1, IV and IV1 may be
regarded as cuspidal inertia groups of the smooth log curve determined by the

geometric generic fiber of p : X log
n → X log

n−1. In particular, the inclusion IV ⊆ IV1 of
profnite groups isomorphic to Zl (cf. Proposition 3.7, (iii)) implies, by [CmbGC],
Proposition 1.2, (i), that P ∈ V1 = V .

Thus, it suffices to consider the case where p(V ) ̸= Xn−1. Then by Proposition

4.1, (i), (ii), V ′ def
= p(V ) is a log divisor of X log

n−1, and p induces an isomorphism

IV
∼→ IV ′ . Now we apply induction on n. Here, we note that although we have

assumed that n > 1, the assertion corresponding to the implication ⇐= for n = 1

follows immediately from [CmbGC], Proposition 1.2, (i). Since A′ def
= p(A) is a log-

full subgroup at P ′ def
= p(P ) (cf. Proposition 4.2, (viii)) that contains IV ′ , it follows

from the induction hypothesis that P ′ = V ′
2 ∩ · · · ∩ V ′

n ∈ V ′, where V ′
i

def
= p(Vi)

and i ∈ {2, . . . , n}. By Proposition 3.7, (iv), it holds that V ′ ∈ {V ′
2 , . . . , V

′
n}, so we

may assume without loss of generality that V ′ = V ′
2 . It follows immediately from

the latter portion of Definition 2.2, (vi), together with the well-known modular
interpretation of the log moduli stacks that appear in the definition of X log

n and

X log
n−1, that there exists a log divisor W ̸= V2 of X log

n such that p(W ) = V ′
2 and

(V ⊆) p−1(V ′
2) = V2 ∪W . Note that V ∈ {V2,W}. Suppose that V = W . Then

IW = IV ⊆ p−1p(IV ) = p−1(IV ′) = p−1(IV ′
2
) = IV1 ⊕ IV2 ,

where the last equality follows from Proposition 4.2, (viii). Now let us consider the

stable log curve obtained by restricting p : X log
n → X log

n−1 to the generic point of
V ′
2 . This stable log curve has precisely two irreducible components, corresponding

to V2 and W , whose intersection consists of precisely one node, which we denote
by eV2∩W ; moreover, V1 may be regarded as a cusp of this stable log curve which,
since V1 ∩ V2 ̸= ∅, is contained in the irreducible component of the stable log curve
corresponding to V2. Write IV2∩W for the inertia group of eV2∩W such that

IV2∩W ⊆ IV2 ⊕ IW = IV2 ⊕ IV .

Since (IV ⊂) IV1⊕IV2 is an abelian group, it holds that (the cuspidal inertia group)
IV1 commutes with IV2 and IV = IW , hence with (the nodal inertia group) IV2∩W .
In particular, by [CmbGC], Proposition 1.2, (i), (ii), we obtain a contradiction to
our assumption that V = W . Thus, V = V2, and P ∈ V2 = V . �
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Proposition 4.4. Let V,W be log divisors and IV an inertia group associated to
V . Then it holds that

W = V ⇐⇒ there exists an inertia group IW associated to W such that IW = IV .

Proof. The implication =⇒ follows immediately from the various definitions in-
volved. Thus, it suffices to consider the implication ⇐=. Recall that it follows
from the well-known modular interpretation of the log moduli stacks that appear
in the definition of X log

n that there exists a log-full point P such that P ∈ V . Let
V1, . . . , Vn be the distinct log divisors such that P = V1∩· · ·∩Vn, V ∈ {V1, . . . , Vn}
(cf. Proposition 3.7, (iii), (iv)). Thus, we may assume without loss of generality
that IV = IVi ⊆ A for some i ∈ {1, . . . , n}. In the following, we assume that there
exists an inertia group IW associated to the log divisor W such that IW = IV and

consider a projection p : X log
n → X log

n−1 as in Proposition 4.2, (iii) or (iv), and the
corresponding (outer) homomorphism p : Πn → Πn−1 of Proposition 4.2, (viii).

Let us first suppose that p(V ) = Xn−1. Then since the generic point of V maps
via p to the generic point of Xn−1, IV ⊆ Ker(p) ∩ A = IV1 (cf. Proposition 4.2,
(viii)). Since IW = IV ⊆ Ker(p), it follows from Propositions 3.7, (iii); 4.1, (i), (ii),
that p(W ) = Xn−1. Now observe that since p(V ) = p(W ) = p(V1) = Xn−1, IV ,
IW , and IV1 may be regarded as cuspidal inertia groups of the smooth log curve

determined by the geometric generic fiber of p : X log
n → X log

n−1. In particular, the
equality and inclusion IW = IV ⊆ IV1 of profinite groups isomorphic to Zl (cf.
Proposition 3.7, (iii)) implies, by [CmbGC], Proposition 1.2, (i), that W = V = V1.

Thus, it suffices to consider the case where p(V ) ̸= Xn−1. By Proposition 4.1, (i),

(ii), V ′ def
= p(V ) is a log divisor of X log

n−1, and p induces an isomorphism IV
∼→ IV ′ .

If p(W ) = Xn−1, then since the generic point of W maps via p to the generic
point of Xn−1, it follows that IW = IV ⊆ Ker(p), in contradiction to the existence

of the isomorphism IV
∼→ IV ′ (cf. Proposition 3.7, (iii)). Thus, we conclude that

p(W ) ̸= Xn−1 and hence, by Proposition 4.1, (i), (ii), that W ′ def
= p(W ) is a

log divisor of X log
n−1, and IW

∼→ IW ′ . Now we apply induction on n. Here, we
note that although we have assumed that n > 1, the assertion corresponding to
the implication ⇐= for n = 1 follows immediately from [CmbGC], Proposition
1.2, (i). Then since IW ′ = IV ′ , it follows from the induction hypothesis that
W ′ = V ′. Now suppose that W ̸= V . Then it follows immediately from the latter
portion of Definition 2.2, (vi), together with the well-known modular interpretation

of the log moduli stacks that appear in the definition of X log
n and X log

n−1, that the

stable log curve obtained by restricting p : X log
n → X log

n−1 to the generic point of
W ′ = V ′ has precisely two irreducible components, corresponding to W and V ,
whose intersection consists of precisely one node. Thus, since IW = IV , we conclude
from [CmbGC], Proposition 1.2, (i), that W = V . �

Proposition 4.5. Let P †, P ‡ be log-full points of X log
n and A† a log-full subgroup

at P †. Then it holds that

P † = P ‡ ⇐⇒ there exists a log-full subgroup A‡ at P ‡ such that A† = A‡.

In particular, the assignment P † 7→ [A†] (where “[(−)]” denotes the Πn-conjugacy
class of “(−)”) determines a natural bijection

{log-full points} ∼→ {Πn-conjugacy classes of log-full subgroups}.



RECONSTRUCTION OF LOG DIVISORS 17

Proof. The assertion of the second display follows from the assertion of the first
display. Let us prove the assertion of the first display. The implication =⇒ is
immediate. Thus, it suffices to prove the implication ⇐=. Suppose that A† = A‡.
Let V1, . . . , Vn be log divisors such that P † = V1 ∩ · · · ∩ Vn; write A† = IV1 ×
· · · × IVn (cf. Proposition 3.7, (iii), (iv)). In particular, for each j ∈ {1, . . . , n},
IVj ⊆ A† = A‡. In particular, it follows from Proposition 4.3 that P ‡ ∈ Vj . Thus,

P ‡ ∈ V1 ∩ · · · ∩ Vn = P † (cf. the notational conventions of Definition 2.2, (ii)), i.e.,
P † = P ‡, as desired. �

In the remainder of the present §4, we shall apply the notational conventions
introduced in the statement of Proposition 4.2 (cf, especially, Proposition 4.2, (i),
(ii)).

Definition 4.6. Let α ∈ A and

A = IV1 × · · · × IVn : α 7→ (a1, . . . , an).

(i) We shall say that α is scheme-theoretically non-degenerate if ai ̸= 1A for each
i ∈ {1, . . . , n}.

(ii) We shall say that α is group-theoretically non-degenerate if ZΠn(α) is an
abelian group.

Theorem 4.7. It holds that

{scheme-theoretically non-degenerate elements of A}

= {group-theoretically non-degenerate elements of A}.

Proof. When r ̸= 1, this follows from Propositions 4.9, 4.12, below. When r = 1,
this follows from Propositions 4.9, 4.12, and 4.14, below. �

Lemma 4.8. It holds that

NΠn(A) = A,

i.e., every log-full subgroup of Πn is normally terminal in Πn.

Proof. In the following, we consider the projection p : X log
n → X log

n−1 of Proposition
4.2, (iii) or (iv), and the associated (outer) homomorphism p : Πn → Πn−1 of
Proposition 4.2, (viii).

We apply induction on n. Here, we note that although we have assumed that
n > 1, the analogous assertion for n = 1 follows immediately from [CmbGC],
Proposition 1.2, (ii). By definition, NΠn(A) ⊇ A. Let α ∈ NΠn(A). Since αAα−1 =
A, it follows that p(α)A′p(α)−1 = A′, where we recall the log-full subgroup A′ =
p(A) of Πn−1 discussed in Proposition 4.2, (viii). Then it follows from the induction
hypothesis that A′ is normally terminal. Thus, p(α) ∈ A′, i.e., p(NΠn(A)) ⊆ A′.
Since p(NΠn(A)) ⊇ p(A) = A′, it follows that p(NΠn(A)) = A′.

Next, we observe that by Proposition 4.2, (viii), NΠn(A) ∩ Πn/n−1 ⊇ A ∩
Πn/n−1 = IV1 . Let α ∈ NΠn(A) ∩ Πn/n−1. Since αAα−1 = A, and Πn/n−1 is

normal in Πn (cf. Proposition 4.2, (viii)), it follows that αIV1α
−1 = IV1 ⊆ A.

On the other hand, let us observe that V1 determines a cusp of the smooth log

curve obtained by restricting p : X log
n → X log

n−1 to the generic point of Xn−1 (cf.
Proposition 4.2, (v)). Thus, we conclude from [CmbGC], Proposition 1.2, (ii), that
α ∈ NΠn/n−1

(IV1) = IV1 , i.e., that NΠn(A) ∩Πn/n−1 = IV1 .
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It follows from the above discussion that we have an exact sequence

1 // IV1
// NΠn(A)

p // A′ // 1.

By the five lemma (cf. Proposition 4.2, (viii)), it thus follows that NΠn(A) = A. �

Proposition 4.9. Let (a1, . . . , an) ∈ IV1 × · · · × IVn = A. If a1, . . . , an ̸= 1A, then
ZΠn(a1 · · · an) = A, hence, in particular, is an abelian group.

Proof. Let X log
n+1 → X log

n be the projection morphism of profile {n + 1}. This
projection induces an exact sequence

1 // Πn+1/n // Πn+1
// Πn

// 1,

which gives rise to an outer representation ρ : Πn → Out(Πn+1/n). Recall that ρ
is injective (cf. [Asd], the Remark following the proof of Theorem 1). Moreover,

recall that there exists an isomorphism ΠGP

∼→ Πn+1/n such that ρ determines an
isomorphism

A
∼→ Dehn(GP )

(cf. [CbTpI], Definition 4.4; [CbTpI], Proposition 5.6, (ii)), and, moreover, it holds
that

Aut(GP ) = NOutC(Πn+1/n)
(Dehn(GP ))

(cf. [CbTpI], Theorem 5.14, (iii)).
Since A ≃ Z⊕n

l (cf. Proposition 3.7, (iii)) is an abelian group, it suffices to verify
that ZΠn(a1 · · · an) = A. Since A is an abelian group, and a1 · · · an ∈ A ⊆ Πn,
it follows that ZΠn

(a1 · · · an) ⊇ A. By [NodNon], Theorem A (cf. also [NodNon],
Remark 2.4.2), and [CbTpI], Corollary 5.9, (ii), it follows that ρ(ZΠn(a1 · · · an)) ⊆
Aut(GP ). Thus, we conclude that

ρ(ZΠn(a1 · · · an)) ⊆ Aut(GP ) ∩ ρ(Πn) = NOutC(Πn+1/n)
(Dehn(GP )) ∩ ρ(Πn)

= Nρ(Πn)(Dehn(GP )) = Nρ(Πn)(ρ(A)) = ρ(NΠn(A)).

In particular, ZΠn(a1 · · · an) ⊆ NΠn(A) = A (cf. Lemma 4.8). �

Definition 4.10. Let G be a semi-graph of anabelioids of pro-l PSC-type. Write G
for the underlying semi-graph of G. Suppose that G is a tree. Let e1, e2 ∈ Edge(G);
b1, b′1 the two branches of e1; b2, b′2 the two branches of e2. We suppose that
G ̸∋b1 ∩ G ̸∋b2 = ∅ (cf. Definition 2.5). Write H for the semi-graph obtained by
considering the “intersection” (in the evident sense) of G∋b1 and G∋b2 . Then we
define the semi-graph of anabelioids of pro-l PSC-type

Gb1/b2

(obtained by “switching” b1 and b2) as follows. We take the underlying semi-graph
Gb1/b2 of Gb1/b2 to be the semi-graph obtained by “gluing” H to G ̸∋b1 and G ̸∋b2 in
the following way:

• we glue the branch of H corresponding to b1 and the branch of G̸∋b2 corre-
sponding to b′2 along a single edge (whose branches correspond to the two
branches that are glued to one another);
• we glue the branch of H corresponding to b2 and the branch of G̸∋b1 corre-
sponding to b′1 along a single edge (whose branches correspond to the two
branches that are glued to one another).
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Then the various connected anabelioids that constitute G naturally determine a
semi-graph of anabelioids of pro-l PSC-type Gb1/b2 whose underlying semi-graph is
the semi-graph Gb1/b2 .

Proposition 4.11. Suppose that r ̸= 1 (resp. r = 1). Let i ∈ {1, . . . , n} (resp.
i ∈ {1, . . . , n− 1}). Then there exists a log divisor H ̸= Vi such that

V1 ∩ · · · ∩ Vi−1 ∩H ∩ Vi+1 ∩ · · · ∩ Vn

is a log-full point (̸= P ).

Proof. Write G for the underlying semi-graph of G def
= GP . It follows from Propo-

sition 3.7, (ii), that there exists a node e ∈ Node(G) such that Vi is the log divisor
associated to e ∈ Node(G). Let w1, w2 ∈ Vert(G) be distinct vertices such that e
abuts to w1, w2.

First, let us suppose that w1, w2 are tripods. Then let us observe that there exist
distinct elements

y1, z1, y2, z2 ∈ (Cr,n

⨿
Node(G)) \ {e}

such that (suitable branches of) e, y1, z1 give rise to the three cusps of G|w1 , and
(suitable branches of) e, y2, z2 give rise to the three cusps of G|w2 .

Let b1 be the branch of y1 that abuts to w1; b2 the branch of y2 that abuts

to w2; G′
def
= (G)b1/b2 (cf. Definition 4.10). Then it follows immediately from the

definitions (Definitions 2.3, 4.10), together with the fact that

(Cusp(G∋b1) ∩ Cusp(G∋b2) ∩ Cr,n) ( Cr,n

(cf. Definition 2.3, Remark 2.4), that there exists a log divisor H ̸= Vi such that
H is the log divisor associated to the element e′ ∈ Node(G′) corresponding to
e ∈ Node(G) and V1 ∩ · · · ∩ Vi−1 ∩ H ∩ Vi+1 ∩ · · · ∩ Vn is a log-full point P ′ ̸= P
such that GP ′ = G′. (Here, we observe that for j ∈ {1, . . . , n} \ {i}, Vj may be
regarded as the log divisor associated to a suitable choice of element e′j ∈ Node(G′)
corresponding to the element ej ∈ Node(G) to which the log divisor Vj is associated.)
This completes the proof of Proposition 4.11 in the case where w1, w2 are tripods.

Thus, we may assume without loss of generality that w2 is not a tripod. Then it
follows from Proposition 3.7, (i), that w1 is a tripod, and w2 is of type (g, r) ̸= (0, 3).
Next, let us observe that r ̸= 1. Indeed, if r = 1, then it follows immediately from
the fact that w2 is of type (g, r) ̸= (0, 3), together with the definition of Vn (cf.
Proposition 4.2, (ii)), that Vi = Vn. This contradicts our assumption that i ≤ n−1
if r = 1. Thus, in summary, we may assume that w1 is a tripod, w2 is of type
(g, r) ̸= (0, 3), and r ̸= 1.

Next, let us observe that there exist distinct elements

y†, y‡, y∗, y1, . . . , yr−2 ∈ (Cr,n

⨿
Node(G)) \ {e}

such that (suitable branches of) e, y†, y‡ give rise to the three cusps of G|w1 , and
(suitable branches of) e, y∗, y1, . . . , yr−2 give rise to the r cusps of G|w2 . (Here, we
remark that since r ̸= 0, 1, it follows that r + 1 ≥ 3.)

Let b† be the branch of y† that abuts to w1; b
‡ the branch of y‡ that abuts to w1;

b∗ the branch of y∗ that abuts to w2. Then observe that, after possibly permuting
the superscripts “†” and “‡”, we may assume that Cusp((G)∋b‡) ⊇ {c1, . . . , cr}.
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Let G′ def
= (G)b†/b∗ . Then it follows immediately from the definitions (cf. the choice

of b1; Definitions 2.3, 4.10), together with the fact that

(Cusp(G∋b†) ∩ Cusp(G∋b∗) ∩ Cr,n) ( Cr,n

(cf. Definition 2.3, Remark 2.4), that there exists a log divisor H ̸= Vi such that
H is the log divisor associated to the element e′ ∈ Node(G′) corresponding to
e ∈ Node(G) and V1∩· · ·∩Vi−1∩H∩Vi+1∩· · ·∩Vn is a log-full point P ′ ̸= P such that
GP ′ = G′. (Here, we observe that for j ∈ {1, . . . , n}\{i}, Vj may be regarded as the
log divisor associated to a suitable choice of element e′j ∈ Node(G′) corresponding
to the element ej ∈ Node(G) to which the log divisor Vj is associated.) �

Proposition 4.12. Suppose that r ̸= 1 (resp. r = 1). Let i ∈ {1, . . . , n} (resp. i ∈
{1, . . . , n−1}) and (a1, . . . , an) ∈ IV1×· · ·×IVn = A. Then ZΠn(a1 · · · ai−1ai+1 · · · an)
is a non-abelian group.

Proof. By Proposition 4.11, there exists a log divisor H ̸= Vi such that P ′ =
V1∩· · ·∩Vi−1∩H ∩Vi+1∩· · ·∩Vn is a log-full point. Write A′ = IV1 ×· · ·× IVi−1 ×
IH × IVi+1 × · · · × IVn . Since

a1 · · · ai−1ai+1 · · · an ∈ A ∩A′,

and A,A′ are abelian groups, it follows that

A,A′ ⊆ ZΠn(a1 · · · ai−1ai+1 · · · an).

Since A,A′ are distinct log-full subgroups (cf. Proposition 4.5) and contained in
ZΠn(a1 · · · ai−1ai+1 · · · an), by Lemma 4.8, it follows that ZΠn(a1 · · · ai−1ai+1 · · · an)
is a non-abelian group. �

Proposition 4.13. If r = 1, then there exists an element i ∈ {1, . . . , n} such that
the projection morphism q : X log

n → X log of co-profile {i} (cf. [MzTa], Definition

2.1, (ii)) induces an isomorphism V1 ∩ · · · ∩ Vn−1
∼→ X.

Proof. Let w be the unique vertex of GP of genus g (cf. Proposition 3.7, (i)). (Note
that since r = 1, it holds that g ̸= 0.) Then since r = 1, it follows immediately
from Propositions 3.7, (i); 4.2, (ii), that there exist a unique vertex u ∈ Vert(GP )
and a unique node e ∈ Node(GP ) (corresponding to Vn) such that e abuts to w, u,
and, moreover, u is a tripod. Next, let us observe that there exist distinct elements
y†, y‡ ∈ (Cr,n

⨿
Node(GP )) \ {e} such that (suitable branches of) e, y†, y‡ give rise

to the three cusps of GP |u. Let b† be the branch of y† that abuts to u, b‡ the branch
of y‡ that abuts to u. Write GP for the underlying semi-graph of GP . Thus, y† ∈
Edge((GP )∋b‡), y

‡ ∈ Edge((GP )∋b†). Then observe that, after possibly permuting
the superscripts “†” and “‡”, we may assume that c1 ∈ Cusp((GP )∋b‡) \ {y‡}.

Note that since, whenever y‡ ̸∈ Cr,n, the genus portion of the type (i.e., “(g, r)”)
of the semi-graph of anabelioids of PSC-type (GP ) ̸∋b‡ is = 0 (cf. Proposition 3.7,

(i)), the fact that c1 ∈ Cusp((GP )∋b‡) \ {y‡} implies that

either y‡ ∈ (Cusp((GP )∋b†) ∩ Cr,n) \ {c1} or Cusp((GP ) ̸∋b‡) ∩ Cr,n ̸= ∅.

In particular, since y† ̸= y‡ and, whenever y‡ ̸∈ Cr,n, Cusp((GP )̸∋b‡) ∩ Cr,n ⊆
Cusp((GP )∋b†) \ {y†}, there exists an element i ∈ {1, . . . , n} such that xi ∈
Cusp((GP )∋b†) \ {y†}. Now it follows immediately from our choice of i, together
with the fact that the divisor Vn corresponds to the node e (cf. Propositions 3.7, (ii);
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4.2, (ii)), that the projection morphism q : X log
n → X log of co-profile {i} induces an

isomorphism q : V1 ∩ · · · ∩ Vn−1
∼→ X, as desired. �

Proposition 4.14. Let (a1, . . . , an) ∈ IV1 × · · · × IVn = A. If r = 1, then
ZΠn(a1 · · · an−1) is a non-abelian group.

Proof. By Proposition 4.13, there exists an element i ∈ {1, . . . n} such that the
projection morphism q : X log

n → X log of co-profile {i} induces an isomorphism

V1 ∩ · · · ∩ Vn−1
∼→ X. By abuse of notation, we write q : Πn → Π1 for the outer

homomorphism induced by q. Write V log
1 ∩ · · · ∩ V log

n−1 for the log scheme obtained

by restricting the log structure of X log
n to the reduced closed subscheme of Xn

determined by V1 ∩ · · · ∩ Vn−1; V
log
j , where j ∈ {1, . . . , n − 1}, for the log scheme

obtained by restricting the log structure of X log
n to the reduced closed subscheme of

Xn determined by Vj . Then it follows immediately that the morphism V log
1 ∩ · · · ∩

V log
n−1 → V log

j → X log induced by q : X log
n → X log determines (for suitable choices

of basepoints) homomorphisms of profinite groups

πpro-l
1 (V log

1 ∩ · · · ∩ V log
n−1)→ πpro-l

1 (V log
j )→ Πn → Π1.

Note that it follows immediately from the definition of IVj as an inertia group
(cf. Proposition 3.7, (iii)) that, for suitable choices of basepoints in the π1(−)’s
of the above display, the image of πpro-l

1 (V log
j ) in Πn, hence also the image of

πpro-l
1 (V log

1 ∩ · · · ∩ V log
n−1) in Πn, is contained in ZΠn(IVj ) ⊂ Πn. In particular, we

obtain homomorphisms of profinite groups

πpro-l
1 (V log

1 ∩ · · · ∩ V log
n−1)→ DV1 ∩ · · · ∩DVn−1 ↪→ Πn → Π1,

where DVj

def
= ZΠn(IVj ) is the decomposition group associated to Vj determined

by IVj (cf. [Hsh], Corollary 2). Next, observe that it follows from the well-known
modular interpretation of the log moduli stacks involved (cf. Definition 2.2, (vi))

that V log
1 ∩ · · · ∩ V log

n−1 → X log is of type N⊕n−1 (cf. [Hsh], Definition 6). Since

V log
1 ∩ · · · ∩ V log

n−1 → X log is of type N⊕n−1, one verifies immediately that the

composite πpro-l
1 (V log

1 ∩· · ·∩V log
n−1)→ Π1 is a surjection. In particular, the composite

DV1 ∩ · · · ∩ DVn−1 ↪→ Πn → Π1 is a surjection, i.e., q(DV1 ∩ · · · ∩ DVn−1) = Π1.
Thus, it follows immediately from the definitions that

Π1 = q(DV1 ∩ · · · ∩DVn−1) = q(ZΠn(IV1) ∩ · · · ∩ ZΠn(IVn−1))

⊆ q(ZΠn(a1) ∩ · · · ∩ ZΠn(an−1)) ⊆ q(ZΠn(a1 · · · an−1)) ⊆ Π1.

In particular, q(ZΠn(a1 · · · an−1)) = Π1, hence also ZΠn(a1 · · · an−1), is a non-
abelian group. �

Theorem 4.15. For � ∈ {◦, •}, let l� be a prime number; k� an algebraically

closed field of characteristic ̸= l�; S� def
= Spec(k�); (g�, r�) a pair of nonnegative

integers such that 2g� − 2 + r� > 0;

X log� → S�

a smooth log curve of type (g�, r�); n� ∈ Z>1; X
log�
n� the n�-th log configuration

space associated to X log� → S�; Π� def
= πpro-l�

1 (X log�
n� ) (for a suitable choice of

basepoint);

ϕ : Π◦ ∼→ Π•
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an isomorphism of profinite groups; A◦ a log-full subgroup of Π◦. We suppose that

r� > 0, and that A• def
= ϕ(A◦) is a log-full subgroup of Π•. Then ϕ induces a bijec-

tion between the set of scheme-theoretically non-degenerate elements (cf. Definition
4.6, (i)) of A◦ and the set of scheme-theoretically non-degenerate elements of A•.

Proof. This follows immediately from Theorem 4.7. �

5. Reconstruction of log divisors

We continue with the notation of §4. In the present §5, we reconstruct the set of
inertia groups associated to log divisors (cf. Theorem 5.2 below).

Lemma 5.1. The following hold:

(i) There exists a unique collection of subgroups B†
1, . . . , B

†
n ⊆ A such that the

following hold:

(a) dimQl
(B†

i ⊗Ql) = n− 1, for each i ∈ {1, . . . , n}.
(b) For each i ∈ {1, . . . , n}, no element of B†

i is (group-theoretically) non-
degenerate.

(c) B†
i = A ∩ (B†

i ⊗Ql) ⊂ A⊗Ql, for all i ∈ {1, . . . , n}.
(ii) In the situation of (i), {B†

i | i ∈ {1, . . . , n}} = {Bj
def
=

∏
m∈{1,...,n}\{j} IVm |

j ∈ {1, . . . , n}}.
(iii) In the situation of (i), {IV1 , . . . , IVn} = {

∩
m∈{1,...,n}\{j} B

†
m | j ∈ {1, . . . , n}}.

Proof. For a ∈ A, we shall write

J(a)
def
= {m ∈ {1, . . . , n} | a ̸∈ Bj}.

Observe that if a1, a2 ∈ A are such that J(a1), J(a2) ̸= ∅, and J(a1) ∩ J(a2) =
∅, then there exists an element λ ∈ Zl such that a1a

λ
2 is non-degenerate. Now

assertions (i), (ii) follow the definitions, together with this observation. Assertion
(iii) follows immediately from assertion (ii). �

Theorem 5.2. For � ∈ {◦, •}, let l� be a prime number; k� an algebraically

closed field of characteristic ̸= l�; S� def
= Spec(k�); (g�, r�) a pair of nonnegative

integers such that 2g� − 2 + r� > 0;

X log� → S�

a smooth log curve of type (g�, r�); n� ∈ Z>1; X
log�
n� the n�-th log configuration

space associated to X log� → S�; Π� def
= πpro-l�

1 (X log�
n� ) (for a suitable choice of

basepoint);

ϕ : Π◦ ∼→ Π•

an isomorphism of profinite groups. We suppose that r� > 0, and that ϕ induces a
bijection between the set of log-full subgroups of Π◦ and the set of log-full subgroups
of Π•. Then ϕ induces a bijection between the set of inertia groups of Π◦ associated

to log divisors of X log ◦
n◦ and the set of inertia groups of Π• associated to log divisors

of X log •
n• .

Proof. Recall that it follows from the well-known modular interpretation of the log
moduli stacks that appear in the definition of X log

n that, for each log divisor V † of
X log

n , there exists a log-full point P † such that P † ∈ V †. Thus, Theorem 5.2 follows
from Proposition 3.7, (iii), (iv); Theorem 4.15; Lemma 5.1. �
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6. Reconstruction of tripodal divisors

We continue with the notation of §5. In the present §6, we reconstruct the set of
inertia groups associated to tripodal divisors (cf. Theorem 6.6 below).

Lemma 6.1. Let V be a log divisor of X log
n . Write V log for the log scheme obtained

by equipping V with the log structure induced by the log structure of X log
n . Let

Y log → S be a smooth log curve of type (0, 3). For m ∈ Z>0, write Y log
m for the

m-th log configuration space associated to Y log → S.

(i) If V is a tripodal divisor, then V log≤1 is isomorphic to UXn−1 .

(ii) If V is a (g, r)-divisor, then V log≤1 is isomorphic to UYn−1 .
(iii) If V is neither a tripodal divisor nor a (g, r)-divisor, then there exists an

element m ∈ {1, . . . , n−2} such that V log≤1 is isomorphic to UYm×SUXn−1−m .

Proof. These assertions follow immediately by considering the objects parametrized
by the various schemes which appear in the assertions. �
Definition 6.2. We shall say that a profinite group G is indecomposable if, for any
isomorphism of profinite groups G ≃ G1 ×G2, where G1, G2 are profinite groups,
either G1 or G2 is the trivial group (cf. [Ind], Definition 1.1). We shall say that a
profinite group G is decomposable if G is not indecomposable.

Remark 6.3. Let m ∈ Z>0. Then we recall from [Ind], Theorem 3.5 (cf. also
[MzTa], Remark 1.2.2; [MzTa], Proposition 2.2, (i)), that Πm is indecomposable
and nontrivial. If, moreover m > 1, then (g, r,m) is completely determined by the
isomorphism class of Πm (cf. Theorem 3.10, (i)). If m = 1, then the isomorphism
class of Πm is completely determined by 2g − 2 + r (cf. [CmbGC], Remark 1.1.3;
[MzTa], Remark 1.2.2).

Remark 6.4. Let V , V log be as in Lemma 6.1; IV an inertia group associated
to V . Then we observe that, for suitable choices of basepoints, there is a nat-

ural homomorphism πpro-l
1 (V log) → ZΠn(IV ) (cf. [Hsh], Corollary 2). Moreover,

this natural homomorphism is, in fact, injective (cf. (the evident pro-l version
of) [SemiAn], Proposition 2.5, (i); [CmbGC], Remark 1.1.3; [MzTa], Proposition
2.2, (i); [AbsTpII], Remark 1.5.1) and surjective (cf. [AbsTpII], Remark 1.5.2;
[AbsTpII], Proposition 1.6, (v)), hence yields an isomorphism

πpro-l
1 (V log)

∼→ ZΠn(IV ).

Lemma 6.5. Let V be a log divisor of X log
n and IV an inertia group associated to

V . Then the following hold:

(i) ZΠn
(IV )/IV is either decomposable, isomorphic to Πn−1, or (in the notation

of Lemma 6.1) isomorphic to Πtripod
n−1

def
= πpro-l

1 (Y log
n−1) (for a suitable choice of

basepoint).
(ii) If (g, r) ̸= (1, 1) or n ≥ 3, then it holds that V is a tripodal divisor if and only

if ZΠn(IV )/IV is isomorphic to Πn−1.
(iii) If (g, r) = (1, 1) and n = 2, then there exist distinct log divisors E,W1,W2,W3

of X log
n such that

{log divisors of X log
n } = {E,W1,W2,W3},

{tripodal divisors of X log
n } = {W1,W2,W3},

{log-full points of X log
n } = {E ∩W1, E ∩W2, E ∩W3}.
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(iv) If (g, r) = (1, 1) and n = 2, then it holds that V is a tripodal divisor if and
only if there exists a log-full subgroup A of Πn such that A does not contain
any inertia group associated to V .

Proof. Assertions (i), (ii) follow from Lemma 6.1; Remarks 6.3, 6.4; [Hsh], Corollary
2. Assertion (iii) follows immediately from the well-known modular interpretation
of the log moduli stacks that appear in the definition of X log

n . Assertion (iv) follows
from assertion (iii) and Proposition 4.3. �

Theorem 6.6. For � ∈ {◦, •}, let l� be a prime number; k� an algebraically

closed field of characteristic ̸= l�; S� def
= Spec(k�); (g�, r�) a pair of nonnegative

integers such that 2g� − 2 + r� > 0;

X log� → S�

a smooth log curve of type (g�, r�); n� ∈ Z>1; X
log�
n� the n�-th log configuration

space associated to X log� → S�; Π� def
= πpro-l�

1 (X log�
n� ) (for a suitable choice of

basepoint);

ϕ : Π◦ ∼→ Π•

an isomorphism of profinite groups. We suppose that r� > 0, and that ϕ induces a
bijection between the set of log-full subgroups of Π◦ and the set of log-full subgroups
of Π•. Then ϕ induces a bijection between the set of inertia groups of Π◦ associated

to tripodal divisors of X log ◦
n◦ and the set of inertia groups of Π• associated to tripodal

divisors of X log •
n• .

Proof. Theorem 6.6 follows from Remark 6.3; Theorem 5.2; Lemma 6.5, (ii), (iv).
�

7. Reconstruction of drift diagonals

We continue with the notation of §6. In the present §7, we reconstruct the set of
inertia groups associated to drift diagonals (cf. Theorem 7.3 below).

Lemma 7.1. The outer homomorphism ιΠ : Πn → Π1×· · ·×Π1 induced by ι : X log
n

→ X log ×S · · · ×S X log (cf. Definition 2.2, (viii)) is a surjection whose kernel is
topologically generated by the inertia groups associated to the naive diagonals.

Proof. It follows from [Hsh], Remark B.2, that we have a natural commutative
diagram

πpro-l
1 (UXn)

//

��

πpro-l
1 (UX1)× · · · × πpro-l

1 (UX1)

��
Πn ιΠ

// Π1 × · · · ×Π1,

where πpro-l
1 (UXn

) → πpro-l
1 (UX1

) × · · · × πpro-l
1 (UX1

) denotes the outer surjective
homomorphism induced by the open immersion UXn ↪→ UX1 ×S · · · ×S UX1 ; the
two vertical arrows are isomorphisms. Thus, it follows from the definition of the
notion of an inertia group that ιΠ : Πn → Π1×· · ·×Π1 is a surjection whose kernel
is topologically generated by the inertia groups associated to the naive diagonals.
This completes the proof of Lemma 7.1. �
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Lemma 7.2. Let V be a tripodal divisor and IV an inertia group associated to V .
Write ιΠ : Πn → Π1 × · · · ×Π1 for the outer homomorphism induced by ι : X log

n →
X log ×S · · · ×S X log (cf. Definition 2.2, (viii)). Then the following hold:

(i) If V is a naive diagonal, then ιΠ(IV ) = {1Π1×···×Π1}.
(ii) If V is not a naive diagonal, then ιΠ(IV ) ̸= {1Π1×···×Π1}.

Proof. Assertion (i) follows from Lemma 7.1. Assertion (ii) follows immediately
the easily verified fact (i.e., by applying induction on n, together with Proposition
4.1, (i)) that if V is not a naive diagonal, then there exists an i ∈ {1, . . . , n} such
that the projection pi : X

log
n → X log maps V to a cusp of X log. �

Theorem 7.3. For � ∈ {◦, •}, let l� be a prime number; k� an algebraically

closed field of characteristic ̸= l�; S� def
= Spec(k�); (g�, r�) a pair of nonnegative

integers such that 2g� − 2 + r� > 0;

X log� → S�

a smooth log curve of type (g�, r�); n� ∈ Z>1; X
log�
n� the n�-th log configuration

space associated to X log� → S�; Π� def
= πpro-l�

1 (X log�
n� ) (for a suitable choice of

basepoint);

ϕ : Π◦ ∼→ Π•

an isomorphism of profinite groups. We suppose that r� > 0, and that ϕ induces a
bijection between the set of log-full subgroups of Π◦ and the set of log-full subgroups
of Π•. Then ϕ induces a bijection between the set of inertia groups of Π◦ associated

to drift diagonals of X log ◦
n◦ and the set of inertia groups of Π• associated to drift

diagonals of X log •
n• .

Proof. First, let us observe that (g◦, r◦, n◦) = (g•, r•, n•) (cf. Theorem 3.10, (i)).
Next, let us observe that when (g◦, r◦) = (g•, r•) = (0, 3) or (1, 1), Theorem 7.3
follow formally from Theorem 6.6 and Proposition 3.4, (iii).

Thus, in the remainder of the proof of Theorem 7.3, we suppose that (g◦, r◦) =

(g•, r•) ̸= (0, 3), (1, 1). Write Π�1
def
= πpro-l�

1 (X log�). Then it follows from Theorem
3.10, (iii), that ϕ induces a commutative diagram

Π◦ ϕ //

ι◦Π
��

Π•

ι•Π
��

Π◦
1 × · · · ×Π◦

1
∼ // Π•

1 × · · · ×Π•
1,

where ι�Π : Π� → Π�1 ×· · ·×Π�1 is the outer homomorphism induced by ι� : X log�
n� →

X log�×S� · · ·×S� X log� (cf. Definition 2.2, (viii)). Thus, the proof of Theorem 7.3
in the case where (g◦, r◦) = (g•, r•) ̸= (0, 3), (1, 1) follows formally from Theorem
6.6; Lemma 7.2; Proposition 3.4, (i), (ii). �

8. Reconstruction of drift collections

We continue with the notation of §7. In the present §8, we reconstruct the drift
collections of Πn (cf. Theorem 8.14 below).
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Definition 8.1. Let Λ be a set of drift diagonals of X log
n . Then we shall say that

Λ is a drift collection of X log
n if there exists an automorphism α of X log

n over S such
that Λ = {α(V ) | V is a naive diagonal}.

Definition 8.2. Let V1, V2 be distinct drift diagonals and IV1 , IV2 inertia groups
associated to V1, V2, respectively.

(i) Since V1, V2 are tripodal divisors (cf. Proposition 3.4, (i)), and n > 1, there
exists a unique vertex v1 (resp. v2) of GV1 (resp. GV2) such that v1, v2 are
tripods. We shall say that {V1, V2} is a scheme-theoretically co-cuspidal pair
if there exists a cusp y ∈ Cr,n which is a cusp of GV1 |v1 , GV2 |v2 .

(ii) We shall say that {V1, V2} is a group-theoretically co-cuspidal pair if there is
no log-full subgroup A such that there exist conjugates of IV1 , IV2 that are
contained in A.

(iii) We shall say that {V1, V2} is a non-intersecting drift pair if V1 ∩ V2 = ∅.

Lemma 8.3. Let V1, V2 be distinct drift diagonals. Then it holds that

{V1, V2} is a group-theoretically co-cuspidal pair

⇐⇒ there is no log-full point contained in V1 ∩ V2.

Proof. This follows immediately from Proposition 4.3. �

Lemma 8.4. Let V1, V2 be log divisors. Then it holds that

V1 ∩ V2 ̸= ∅ ⇐⇒ there is a log-full point contained in V1 ∩ V2.

Proof. The implication⇐= is immediate. Thus, it suffices to verify the implication
=⇒. Suppose that V1 ∩ V2 ̸= ∅. Let P ∈ V1 ∩ V2 be a point and Q ∈ X log

n such
that ♯Node(GQ) = n and GP is obtained from GQ by generization (with respect to
some subset of Node(GQ) (cf. [CbTpI], Definition 2.8)). Then it follows from the
equivalence (i) ⇐⇒ (ii) of Proposition 2.9 that Q ∈ V1 ∩ V2. On the other hand,
by Proposition 3.6, it holds that Q is a log-full point. This completes the proof of
the implication =⇒. �

Lemma 8.5. Every scheme-theoretically co-cuspidal pair is group-theoretically co-
cuspidal.

Proof. Let {V1, V2} be a scheme-theoretically co-cuspidal pair, v1 the unique ver-
tex of GV1 which is a tripod, and y1, y2 ∈ Cr,n the two cusps of GV1 |v1 . By Lemma
8.3, to complete the proof of Lemma 8.5, it suffices to derive a contradiction under
the assumption that V1 ∩ V2 contains a log-full point P . Thus, suppose that this
assumption holds. Then v1 determines a unique vertex vP1 of GP , which is neces-
sarily a tripod (cf. [CbTpI], Definition 2.8, (iii)). In particular, since GV2 may be
regarded as a generization of GP , the vertex vP1 of GP determines a vertex w2 of
GV2 such that y1, y2 are cusps of GV2 |w2 (cf. [CbTpI], Definition 2.8, (iii)). Since
{V1, V2} is a scheme-theoretically co-cuspidal pair, it thus follows from Remark 2.4
that V1 = V2, a contradiction. �

Lemma 8.6. Every non-intersecting drift pair is scheme-theoretically co-cuspidal.

Proof. Let {V1, V2} be a pair of distinct drift diagonals which is not a scheme-
theoretically co-cuspidal pair. Then since n > 1, there exists a unique vertex v1
(resp. v2) of GV1 (resp. GV2) such that v1, v2 are tripods (cf. Proposition 3.4,
(i)). Since {V1, V2} is not a scheme-theoretically co-cuspidal pair, there exist cusps
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y1, z1 of GV1 |v1 and cusps y2, z2 of GV2 |v2 such that y1, z1, y2, z2 ∈ Cr,n are distinct
elements, ♯({y1, z1} ∩ {c1, . . . , cr}) ≤ 1, ♯({y2, z2} ∩ {c1, . . . , cr}) ≤ 1 (cf. Definition
2.3). Thus, it follows from the well-known modular interpretation of the log moduli
stacks that appear in the definition of X log

n that there exist a point P of X log
n and

terminal vertices t1, t2 of GP such that t1, t2 are tripods, y1, z1 are cusps of GP |t1 ,
and y2, z2 are cusps of GP |t2 . In particular, by the equivalence (i) ⇐⇒ (iii) of
Proposition 2.9, it holds that P ∈ V1 ∩ V2. Thus, {V1, V2} is not a non-intersecting
drift pair. �

Proposition 8.7. Let V1, V2 be distinct drift diagonals. Then it holds that

{V1, V2} is a scheme-theoretically co-cuspidal pair

⇐⇒{V1, V2} is a group-theoretically co-cuspidal pair

⇐⇒{V1, V2} is a non-intersecting drift pair.

Proof. This follows immediately from Lemmas 8.3, 8.4, 8.5, 8.6. �

Definition 8.8. Let V1, V2, V3 be distinct drift diagonals. Then we shall say that
{V1, V2, V3} is a scheme-theoretically co-cuspidal triple if {V1, V2}, {V2, V3}, and
{V3, V1} are scheme-theoretically co-cuspidal pairs.

Definition 8.9. Let Λ be a set of drift diagonals such that ♯Λ = n(n−1)
2 . We shall

say that Λ is a scheme-theoretic drift collection of X log
n if there exist distinct drift

diagonals Vi,j , where i ∈ {1, . . . , n− 1}, j ∈ {i+1, . . . , n}, such that Λ = {Vi,j | i ∈
{1, . . . , n− 1}, j ∈ {i+ 1, . . . , n}}, and, moreover, the following hold:

(a) For any i ∈ {1, . . . , n − 2}, {Vi,i+1, Vi+1,i+2} is a scheme-theoretically co-
cuspidal pair.

(b) For any i ∈ {1, . . . , n− 2}, j ∈ {i+ 2, . . . , n− 1}, then {Vi,i+1, Vj,j+1} is not a
scheme-theoretically co-cuspidal pair.

(c) For any i ∈ {1, . . . , n − 2}, j ∈ {i + 2, . . . , n}, {Vi,j , Vi,i+1, Vi+1,j} is a scheme-
theoretically co-cuspidal triple.

Lemma 8.10. Every drift collection of X log
n is a scheme-theoretic drift collection

of X log
n .

Proof. Let Λ be a drift collection of X log
n . Then it follows from Proposition 3.3, (i)

(cf. also Remark 3.2), that there exist distinct elements y1, . . . , yn ∈ Cr,n such that

Λ = {V ({yi, yj}) | i ∈ {1, . . . , n− 1}, j ∈ {i+ 1, . . . , n}.

Then one verifies easily that if we write Vi,j
def
= V (yi, yj), then the Vi,j ’s satisfy the

conditions of Definition 8.9, and hence that Λ is a scheme-theoretic drift collection
of X log

n . �

Lemma 8.11. Every scheme-theoretic drift collection of X log
n is a drift collection

of X log
n .

Proof. By Proposition 3.4, (ii), we may assume without loss of generality that
(g, r) = (0, 3) or (1, 1). Let Λ be a scheme-theoretic drift collection of X log

n . By
Definitions 2.3; 8.2, (i); 8.9, (a), there exist elements y1, y2, y3 ∈ Cr,n such that
V1,2 = V ({y1, y2}), V2,3 = V ({y2, y3}). By Definitions 2.3; 8.2, (i); 8.9, (a), (b),
there exist elements y4, . . . , yn ∈ Cr,n such that Vi,i+1 = V ({yi, yi+1}). Thus,
by Definitions 2.3; 8.8; 8.9, (c), it holds that Vi,j = V ({yi, yj}). Finally, since
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(g, r) = (0, 3) or (1, 1), by applying a suitable automorphism of X log
n that arises

from a permutation of the r+n marked points of the stable log curve X log
n+1 → X log

n ,
it follows that Λ = {V ({yi, yj}) | i ∈ {1, . . . , n − 1}, j ∈ {i + 1, . . . , n}} is a drift
collection of X log

n . �
Proposition 8.12. Let Λ be a set of drift diagonals of X log

n . Then Λ is a drift
collection of X log

n if and only if Λ is a scheme-theoretic drift collection of X log
n .

Proof. This follows immediately from Lemmas 8.10, 8.11. �
Definition 8.13. We shall refer to as a drift collection of Πn any collection

{IV | V ∈ Λ}
of subgroups of Πn associated to some drift collection Λ of X log

n , where IV denotes
an inertia group of Πn associated to V ∈ Λ.

Theorem 8.14. For � ∈ {◦, •}, let l� be a prime number; k� an algebraically

closed field of characteristic ̸= l�; S� def
= Spec(k�); (g�, r�) a pair of nonnegative

integers such that 2g� − 2 + r� > 0;

X log� → S�

a smooth log curve of type (g�, r�); n� ∈ Z>1; X
log�
n� the n�-th log configuration

space associated to X log� → S�; Π� def
= πpro-l�

1 (X log�
n� ) (for a suitable choice of

basepoint);

ϕ : Π◦ ∼→ Π•

an isomorphism of profinite groups. We suppose that r� > 0, and that ϕ induces a
bijection between the set of log-full subgroups of Π◦ and the set of log-full subgroups
of Π•. Then ϕ induces a bijection between the set of drift collections of Π◦ and the
set of drift collections of Π• (cf. Definition 8.13).

Proof. This follows from Theorem 7.3 and Propositions 8.7, 8.12. �

9. Reconstruction of generalized fiber subgroups

We continue with the notation of §8. In the present §9, we reconstruct the gener-
alized fiber subgroups of Πn (cf. Theorem 9.3 below).

Definition 9.1. Let H be a closed subgroup of Πn. We shall say that H is a
generalized fiber subgroup if there exist an automorphism α of X log

n over S and
a fiber subgroup F ⊆ Πn (cf. [MzTa], Definition 2.3, (iii)) such that H = β(F ),
where β is an automorphism of Πn which arises from α (cf. Remark 3.2; [HMM],
Definition 2.1, (ii); [HMM], Remark 2.1.1).

Proposition 9.2. If (g, r) ̸= (0, 3), (1, 1), then

{generalized fiber subgroups} = {fiber subgroups}.

Proof. This follows immediately from Remark 3.2. �
Theorem 9.3. For � ∈ {◦, •}, let l� be a prime number; k� an algebraically

closed field of characteristic ̸= l�; S� def
= Spec(k�); (g�, r�) a pair of nonnegative

integers such that 2g� − 2 + r� > 0;

X log� → S�
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a smooth log curve of type (g�, r�); n� ∈ Z>1; X
log�
n� the n�-th log configuration

space associated to X log� → S�; Π� def
= πpro-l�

1 (X log�
n� ) (for a suitable choice of

basepoint);

ϕ : Π◦ ∼→ Π•

an isomorphism of profinite groups. We suppose that r� > 0, and that ϕ induces a
bijection between the set of log-full subgroups of Π◦ and the set of log-full subgroups
of Π•. Then ϕ induces a bijection between the set of generalized fiber subgroups of
Π◦ and the set of generalized fiber subgroups of Π• (cf. Definition 9.1).

Proof. Write Π�1
def
= πpro-l�

1 (X log�). For any drift collection Λ� of Π�, write

ι� : Π� → Q�
Λ� for the surjection obtained by forming the quotient by the nor-

mal closed subgroup generated by the subgroups ⊆ Π� that constitute the drift
collection Λ�. Recall that it follows from Lemma 7.1 that there exist n� surjec-
tions Q�

Λ� → Π�1 , which we shall refer to as Λ�-projections, such that the resulting

product homomorphism determines an isomorphism Q�
Λ�

∼→ Π�1 × · · · ×Π�1 .
Let F ◦ ⊆ Π◦ be a generalized fiber subgroup of Π◦. Then one verifies immedi-

ately that there exists a drift collection Λ◦ of Π◦ such that F ◦ is contained in the
kernel Ker(p◦) of some Λ◦-projection p◦. Write Λ• for the drift collection of Π•

determined by applying ϕ to Λ◦ (cf. Theorem 8.14).
Next, observe that since each factor “Π1” of the n factors of the product “Π1 ×

· · · × Π1” of Lemma 7.1 is slim (cf., e.g., [MzTa], Proposition 1.4), it follows that
each such factor “Π1” may be reconstructed as the centralizer of any product of
open subgroups of the remaining n−1 factors. In particular, it follows immediately
from [MzTa], Corollary 3.4, that there exists a commutative diagram

Π◦ ϕ //

p◦

��

Π•

p•

��
Π◦

1
// Π•

1,

where p• is a Λ•-projection, and the horizontal arrows are isomorphisms. On the
other hand, it follows immediately from the definition of p� that Ker(p�) has a
natural structure of configuration space group (whose “(g, r)” is ̸= (0, 3), (1, 1)!),
and that F ◦ is a fiber subgroup of Ker(p◦) (cf. [MzTa], Proposition 2.4, (i), (ii)).

Thus, by [MzTa], Corollary 6.3, F • def
= ϕ(F ◦) is a fiber subgroup of Ker(p•), hence

also of Π•. �
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